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Abstract. One of the well known relations between SU(n) and the n dimensional isotropic 
harmonic oscillator is examined and extended to show exactly which representations of 
SU(n) can occur on the degeneracy spaces. The method is further extended to show which 
representations of SU(n, 1) can be generated by the oscillator problem. 

1. Introduction 

The relations between SU(n) and the n dimensional oscillator have been studied by 
many authors, such as Baker (1956), Demkov (1959), Jauch and Hill (1940), Dulock 
and MacIntosh (1965). Some present one or other of these relations as a proof that 
SU(n) is the symmetry group of the harmonic oscillator. But this leads to difficulties 
when considering the degeneracies of the anisotropic oscillator with rationally related 
frequencies and so the purpose of this paper is to examine one of these proofs in more 
detail than usual. 

2. Representations generated by the harmonic oscillator 

The argument in question depends on a connection between the creation and annihila- 
tion operators and the Lie algebra of SU(n). The hamiltonian H of the n dimensional 
isotropic harmonic oscillator is written as 

n 

H = aj.aj 
j =  1 

where 

[ a j ,  a:] = d j , k .  ( 2 )  

Then it is noted that there are certain combinations of the aj  and a: which commute 
with the hamiltonian and which have the same commutation relations as the infinite- 
simal generators of SU(n). However, the result is more general than this, for consider 
all the operators of the form $ak where j ,  k = 1,. . . , n. 

Let Ej,k be the n x n matrix with 1 in the ( j ,  k )  position and zero everywhere else, 
then, using ( 2 )  it is easy to show that each aTak commutes with the hamiltonian H defined 
in (1) and that the a7uk satisfy the same commutation relations as the E j , k .  As the Ej,k 
are a basis of the Lie algebra gl(n) derived from the group GL(n, C), this shows that each 
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degeneracy space of H carries a representation of gl(n). I t  can also be shown that the 
a7uk permute the eigenvectors of H, and so the representations of gl(n) are irreducible. 
Further, these representations can be exponentiated to give finite, analytic, irreducible 
representations of GL(n, C )  on each degeneracy space of H. However, such representa- 
tions are not necessarily unitary. 

In fact, as the infinitesimal generators a7uk of these representations are not anti- 
symmetric, the representations cannot be unitary. 

As U(n) is a subgroup of GL(n, C), each degeneracy space of H carries a representation 
of U(n). The infinitesimal generators of these representations are represented by anti- 
symmetric combinations of the aj*ak, so that the representations of U(n) must be unitary. 
A further restriction cannot affect the unitarity and these representations of GL(n, C) 
remain irreducible when restricted to SU(n). Thus it can be concluded that each degene- 
racy space of H carries an irreducible unitary representation of SU(n). 

3. Representation of SU(n) 

Although not essential, the final restriction to SU(n) is useful because the theory of 
Casimir operators can now be used to calculate which irreducible representations of 
SU(n) are realized on the degeneracy spaces by the method just outlined. The appropriate 
Casimir operators are the C(n, d). 

C(n, 4 = XLX~. . . X,,,X:, 
j , k ,  ..., m =  1 

(3) 

where each summand is the product of d operators Xi and the sum is taken over all 
possible j ,  k , .  . . , m. 

For the representations of SU(n) under consideration, X i  is represented by aTuk. 
Thus, in this realization, each summand in (3) is represented by aj*(ak@.  . . amaX). aj 
and so 

I \ d - 1  

Using (1) and (2) it can be shown that 

Cam.: = H + n 
m 

and that 

(H + n)aj = aj(H + n - 1). 

Hence, in this realization, 
n 

C(n,d)  = 1 aj*aj (H+n- l )d- l  = H ( H + n - l ) d - ' ,  (4) 

which means that C(n, d )  takes a fixed value on each degeneracy space of H. Indeed, 
if the value of H on one of its degeneracy spaces is E,  then C(n,d) takes the value 
E(E + n - l)d- on this space. 

But the values of C(n, d) on each irreducible unitary representation of SU(n) have 
been calculated by Perelomov and Popov (1968). Let m = (ml , . . . , mn), mj-  2 m j ,  be 

J =  1 
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the highest weight specifying an irreducible representation of SU(n), and C(n, d)(m) 
the value of C(n, d )  on that representation, then they show that 

m 1 - ( A j +  l)z 
C(n, 6)(m)zd = z -  ' 

d = O  

where Aj  = mj + n - j .  
Suppose m characterizes a representation realized on the degeneracy space of H, 

on which H takes the value E,  then (4) can be used to evaluate (5) .  In fact, remembering 
that C(n, O)(m) = n, and substituting the other values from (4) the left-hand side can be 
summed to give n + Ez{ 1 - z(E + n - 1))- and ( 5 )  can be simplified to give the expression 

( fi (l-j.jz)){l-(E+nk) [l--(n--l)z) = (1-(E+n-l)z} 
j =  1 j =  1 1 {l-z(Aj+l)) . ( 6 )  

Comparing the coefficients of z"+' on either side of (6) and remembering that 
E > 0, n 2 2, it is clear that for some j , A j  = 0. Now the left-hand side of (6) is zero 
when z = ( E  + n)- ', (n  - 1)- ' or A,- ' ( A j  # 0), whereas the right-hand side is zero when 
z = ( E + n -  l)- '  or (A,+ l)- ' ,  provided ( A j +  1) # 0. As these two sets of zeros must 
be identical, there must be a value of k such that Ak = 1 for every value o f j  such that 
A j  = 0. Proceeding in this way it can be shown that A 1 , .  . . , in is some permutation of 
0, 1, . . . , ii - 2, ( E  + n - 1). Using the relations between i j ,  mj and mj-  this implies that 
m = (E ,  0, 0, . . . , 0) which characterizes a representation belonging to the set of com- 
pletely symmetric irreducible representations of SU(n). 

Thus it has been shown that each degeneracy space of the hamiltonian of the 
isotropic harmonic oscillator carries a representation of GL(n, C) generated by the 
commutation relations. When restricted to SU(n) this irreducible representation 
is unitary and is the completely symmetric representation with highest weight 
m = (E,O,O ,..., 0). 

4. Representation of SU(n, 1) 

There is also an interesting connection between SU(n, 1) and the n dimensional harmonic 
oscillator, which can be demonstrated using the same sort of reasoning. 

Take H, aj  and a t  as defined in (1) and (2), and consider the (n  + 1)' operators, 
a)ak ,  i f ia , ,  ia)f l ,  - H where j and k take the values 1 to n. As H commutes with each 
aTak, so does @ and hence the commutation relations between these operators can 
be calculated. I t  turns out that these are the same as the commutation relations between 
the matrices E j , k ;  E,, l , k ;  Ej,,+ ; E,+ ',,+ and so the operators define a representation 
of the Lie algebra gl(n+ 1). However, this is not a faithful representation of gl(n+ 1) 
and must be restricted to sl(n+ 1) if there is to be a 1-1 correspondence. If it is further 
restricted to the subalgebra su(n, 1) of sl(n + 1) then all the operators are skew-symmetric. 
Thus this restricted representation can be exponentiated to give a faithful unitary 
representation of SU(n, 1) realized on the same space as the oscillator problem. 

From the previous discussion it is clear that when this representation is restricted to 
SU(n) it will decompose into the totally symmetric representations of SU(n) and will 
leave the degeneracy spaces of H invariant. 
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Again the Casimir operators, C(n+ 1, d)  can be used to show which representations 
of SU(n, 1) can be realized like this. In this case the C(n+ 1, d)  can be calculated by 
splitting them into several parts, depending on how many terms like X3" occur at 
either end of the summand. Let 

A = 1 X { X k . .  . XJm j # n + l  
j ,k ,m 

r terms 1 + s terms -- 
Br,s = 1 X , ; ; x ; + l  . . . x;+ lx:;; j , m  # n + l .  

j , m  

Now X:: = - H and both H and ,,/% commute with all the other terms which can 
occur so that if 1 = r + s < d - 2, then Br,s = ( - H)'B, where 

d - ( I +  1)terms 
n __c_? 

B, = 1 U k .  [Xk . . . X j ]  . U?. 
j , k =  1 

For each 1 there are E possible pairs (r ,  s) and so 
d - 2  

C(n+ 1, d )  = A + 1 1( -H)'B, + ( d -  1)(H +n)( -H)d-l  +( - H ) d .  (7) 

Both A and B, can be calculated by observing what happens when combinations of 
X,+' ;, X;' ' and X;+ occur in a summand and then seeing how often this can happen. 
Adding together all the summands which have exactly p pairs of indices equal to n + 1, 
A can be split up into terms like C(n, d-p)(l - H ) P  multiplied by ( d ;  '). Using (4) these 
terms can be summed to show that 

I =  1 

A = H n d - ' .  

Similarly it can be shown that 

B, = (n+H)Znd-'-2. 

Putting the values of A and B, in the right-hand side of (7) and adding all the terms 
together, it turns out that C(n+ 1, d)  is identically equal to zero for all integer values of 
d i n  the range 1 to n+ 1. 

Thus the n dimensional isotropic oscillator generates a faithful unitary representa- 
tion of SU(n, 1) which is realized on the same space as the hamiltonian and whose 
Casimir operators are all zero. When this representation is restricted to SU(n) it decom- 
poses into the completely symmetric representations, which leave the degeneracy spaces 
of the hamiltonian invariant. 

5. Conclusions 

I t  has been shown that the representations of SU(n) connected with the isotropic har- 
monic oscillator are the restrictions of representations of GL(n, C )  also connected with 
the oscillator. The restriction to SU(n) means that the representations involved can be 
uniquely specified by evaluating the Casimir operators. Furthermore, there is a faithful 
representation of SU(n, 1) connected with the isotropic oscillator and for this all the 
Casimir operators take the value zero. 
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